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Abstract. A method for the description of fluctuations (variations) in the period of the motion of cyclic-dynamic
systems elements is presented. The random change of the period of cyclic mechanisms, high-Q oscillators and
auto-oscillating systems, as well as random changes of the time intervals between the moments of passing fixed
linear co-ordinates by the moving mirror of a Fourier spectro-radiometer is studied. It is shown that the period
of the fluctuations follows from a non-Markov random process.
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1. Introduction

The traditional description of dynamic systems consists in defining the change dependence of
parameters characterising their state versus time. This way, with the help of the dynamic equa-
tions, we define the dependencies of the x-co-ordinate that describes the state of the system
versus time t . We assume that the time run is uniform, and the time intervals �t between the
regular moments of determining the value of the x-co-ordinate are constant (Figure 1).

Still, in many problems associated with the description of periodic processes and motions
of cyclic systems there is a necessity of determining time moments t corresponding to specific
discrete values of the x-co-ordinate, i.e., the t (x) dependence (Figure 2).

In this case the time moments between the states of the system characterised by a discrete
set of values of the x-co-ordinate are not equal and contain determinate and random com-
ponents in the form of variations and fluctuations of the time intervals. The presence of such
variations (or fluctuations) is to be considered when developing models of dynamic systems
in t (x) variables, and the ensuing peculiarities are to be studied adequately.

The above problem arises most prominently when studying the dynamics of the compo-
nents of cyclic mechanisms [1, Chapter 3–6]. Variations (fluctuations) of the cycle of motions
of their components appear due to the influence of determinate and random processes in
such mechanisms. Actual measurements performed for mechanisms confirm the presence of
the above nonuniformity of motion. Therefore, we believe it is justified to use the model while
accounting for nonuniform changes of the time intervals when describing the dynamics of
cyclic mechanisms. A similar problem also arises when describing controlling systems using
time measurements of the motion parameters as the feedback.

A description of cyclic dynamic systems can be given in the simplest way when the rela-
tive fluctuations of the cycle of motion of their components are small. In this case it is pos-
sible to construct a linear theory linking fluctuations of the time intervals to the system state
parameters. This in turn allows one to uniquely define statistic characteristics of the period
fluctuations depending on the character of dynamic parameter fluctuations. Still, even for the



278 A.N. Morozov and A.L. Nazolin

0

5

10

15

0 5 10 15 20 25 t

x

Figure 1. Dependence of the x-co-ordinate versus time t .
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Figure 2. Dependence of time moments t versus
x-co-ordinate.

above simplest case there arises a need to use non-Markov random processes to describe fluc-
tuations of the oscillation period. This makes it more difficult to develop a theory.

2. Fluctuations of the revolution period of a cyclic dynamic-system shaft

Different types of reducers, electric engines, generators and other machines refer to cyclic
dynamic systems with rotating components (shafts). Their specific feature is the presence of
shafts that rotate nonuniformly, which reflects the specifics of the dynamic processes occur-
ring in them.

In order to give a statistic description of the measurements of the time intervals characte-
rising the passing of the shaft through a fixed angular position, it is necessary to construct
dependencies that uniquely link the fluctuations (variations) of the angular displacement of
the rotating component to the fluctuations (variations) of the time intervals of their rotation
cycles. Constructing the above dependencies allows one to define time and spectral Hanning
windows for the transition of the angular displacement into time intervals. In their turn these
Hanning windows help to determine the principal limitations of using time measurements to
study the dynamics of the cyclic performance of the mechanisms.

Let us define dependencies of the period fluctuations versus fluctuations of the angular dis-
placement of the shaft. To determine the current period T (t) of the rotation of the cyclic-
mechanism component, it is possible to apply the following correlation [2, Equation 2]:

2π =
∫ t+T (t)

t

ϕ̇(τ )dτ, (2.1)

where ϕ(t) is the dependence of the shaft’s angular displacement on time.
Considering that

T (t)=T0 + δT (t), (2.2)
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where

|δT (t)|�T0, (2.3)

and δT (t) defines fluctuations (variations) of the period, we may write expression (2.1) in a
first approximation as:

2π =ω0T (t)+
∫ t+T0

t

δϕ̇(τ )dτ. (2.4)

Here we have

ϕ(t)=ω0t + δϕ(t), (2.5)

where δϕ (t) defines fluctuations (variations) of the shaft’s angular displacement and ω0 =
2π/T0 is the average cyclic frequency. Here the assumption has been made that the mean
square deviation of the fluctuation (variation) rate of the angle, σδϕ̇ , is infinitesimal in com-
parison with the average cyclic frequency ω0: σδϕ̇ �ω0.

Fluctuations of the angular displacement and the period are due to noises and variations –
due to weak periodic changes in the dynamics of the cyclic mechanism. Still, despite the vari-
ety of potential variations and fluctuations of the angular displacement and the period, it
is possible to give their general mathematical description in the class of random functions.
Therefore, in what follows the stochastic connectivity between the angular displacement and
time intervals is analysed.

Equation (2.4) allows one to write down a linear correlation linking the period fluctuations
(variations) δT (t) and the angular fluctuations (variations) δϕ(t) as follows:

δT (t)=− T0

2π
(δϕ(t +T0)− δϕ(t)). (2.6)

Equation (2.6) allows one to understand the type of spectral Hanning window for transfer-
ring angular fluctuations into the current period fluctuations. If we assume that (2.6) describes
an ideal system with one input and one output, then the time transformation window (pulse
characteristic) can be presented in the following way:

h(t)=− T0

2π
(δ(t +T0)− δ(t)), (2.7)

where δ(t) in the delta-function.
The system correlation function of the procedure to change the current period becomes as

follows:

Rh(τ)=
∫ ∞

−∞
h(t)h(t + τ)dt = T 2

0

(2π)2
(2δ(τ )− δ(τ −T0)− δ(τ +T0)). (2.8)

In this case correlation functions of the period fluctuations RδT (τ ) and the angular fluctua-
tions Rδϕ(τ) will be restricted by the dependence

RδT (τ )=
∫ ∞

−∞
Rh(t)Rδϕ(t + τ)dt . (2.9)

Applying a direct Fourier transform of (2.8), we get a spectral transformation window
(frequency characteristic):

GδT (ω)= T 2
0

π2
sin2

(
ωT0

2

)
. (2.10)
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It follows from (2.10), if the following conditions are met

ωT0 =2πk, (2.11)

where k = 1, n, that the fluctuation amplitude of the rotation period tends to zero. For this
reason influences with frequencies close to ω=2πk/T0 do not cause responses, and therefore
do not change the rotation period. In particular, during measurements of the current period
there is no possibility to register processes at frequencies that are integer-valued and divisible
by the average rotation frequency. Because of this the accuracy of the measurement of the
current period is not dependent on the error of the pitch of the registered (discrete) angular
positions of the shaft, and is only determined by errors in the time-interval measurements.

Equation (2.10) shows that the intensity of the time-interval fluctuations for the same fluc-
tuations of the angular displacement is determined by the co-factor T 2

0
/π2. In a first approx-

imation the linear Equation (2.6) has a limited range of application. This has to do with the
possibility of applying the inequality (2.3). In order to define the range of application of the
linear relation (2.6), we have carried out a digital modelling of the shaft’s angular displace-
ment versus the current time by the formula:

ϕ(tk)=ω0tk + δϕ(tk), k =1,2 . . .

Here δϕ(tk) denotes white Gauss noise with a dispersion σ 2
ϕ . A calculation of the current

period based on the results of digital modelling was carried out using Tn = tk(n) − tk(n−1), where
tk(n) is the current time for the shaft passing the nth fixed angular position defined such that
ϕ(tk)=2πn, n=1,2 . . . . With the values of the current period we find the assessed value for
the dispersion of the current period fluctuations σ 2

δT and calculate the intensity of the equiv-
alent phase fluctuations by invoking σϕ̂ =ω0σδT .

An analysis of the digital-modelling results indicates that, if the relative level of the time
interval fluctuation does not exceed 10%, a first approximation for the solution of the integral
relation (2.1) satisfactorily describes the link between the angular displacement and the time-
interval fluctuations in the steady-state mode of the cyclic mechanism. Growth of the inten-
sity of the angular-displacement fluctuations leads to a change of the function describing the
distribution of the period fluctuations, and to low-frequency filtration in the spectral domain
(Figure 3).

Therefore, application of the linear transformation of fluctuations of the shaft’s angu-
lar displacement into time-interval fluctuations is possible after studying the dynamics of
the cyclic mechanisms with reasonably uniform rotation of the elements. It is necessary to
study (2.1) directly when studying a mechanism’s period of shaft rotation involving significant
changes (e.g. an internal-combustion engine).

Let us review the following modelling problem to study the specifics of the transforma-
tion of the angular displacement within the period of shaft rotation. Suppose we have a stiff
shaft that is influenced by moments of external forces and viscous friction. A linear differen-
tial equation describing the dynamics of the rotary motion of such a shaft is:

J ϕ̈ +Rϕ̇ =M(t), (2.12)

where J is the moment of inertia of the shaft, R is the friction factor and M(t) is the external
torque.

Assuming that

M(t)=M0 + δM(t), (2.13)
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Figure 3. Spectral density of the power of the period fluctuations by 12 marks. ω0 = 1 s−1; (a) σϕ = 10−3 rad,
(b) σϕ =10 rad

where |δM(t)|�M0, and δM(t) denote the moment fluctuations, and inserting Equation (2.5)
into Equation (2.12), we get the stochastic differential equation:

J (δϕ̈ +αδϕ̇)= δM(t), (2.14)

where α = R/J is a damping factor of the mechanical system. Multiplication of Equa-
tion (2.14) by T0/2π and considering (2.6) allow us to derive the following stochastic differ-
ential equation for the rotary motion of the shaft

J
(
δT̈ (t)+αδṪ (t)

)=− T0

2π
(δM(t +T0)− δM(t)) . (2.15)

Suppose that fluctuations of the external torque δM(t) are represented by white Gaussian
noise (with zero distribution average), with a correlation function given by

RδM(τ)=〈δM(t)δM(t + τ)〉=Dmδ(τ), (2.16)

where 〈. . . 〉 stands for the procedure to determine the distribution average and Dm is the bilat-
eral spectral density of the power of external-torque fluctuations. Then the bilateral spectral
density of the power of the angular displacement fluctuations becomes

Gδϕ(ω)= Dm

J 2
(
α2ω2 +ω4

) , (2.17)

and the bilateral spectral density of the power of the period fluctuations is equal to

GδT (ω)= DmT 2
0

π2J 2
(
α2ω2 +ω4

) sin2
(

ωT0

2

)
. (2.18)
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To obtain Equation (2.18) we used the transformation spectral window (2.10). In the neigh-
bourhood of zero frequency (2.18) indicates

GδT (ω)|ω→0 = DmT 4
0

(2π)2 α2J 2
. (2.19)

Figure 4 presents graphs of spectral densities of the power of phase fluctuations Gδϕ (ω),
and fluctuations of the current period GδT (ω) of the shaft rotation expressed by (2.17) and
(2.18) with the following parameters values: J = 104 kg m2, Dm = 108 N2 m2 s, ω0 = 314 s−1,

α =0·4 s−1.
An analysis of the obtained dependencies of the spectral power densities Gδϕ (ω) and

GδT (ω) indicates that the intensities of the angular-displacement fluctuations and of the
period fluctuations increases along with the decrease of the shaft-rotation frequency. They
reach their maximum values for zero frequency. The frequency ω=α defines the limit of the
low-frequency (ω<α) and high-frequency (ω>α) processes in the mechanical system. For the
interval of frequencies of the angular-displacement fluctuations [0, α], the spectral density of
the period-fluctuation power decreases as GδT (ω) ∼ sin2(ω)/ω2, and for the densities [α,∞)

as GδT (ω)∼ sin2(ω)/ω4.
Therefore, the higher the frequency of the moment fluctuations at the shaft, the more the

shaft limits them owing to its own moment of inertia J , thus reducing the intensity of the
angular-displacement fluctuations and of the current rotation period.

The solution of differential equation (2.14) in the time domain yields the correlation func-
tions of the frequency fluctuations δϕ̇, the angular displacement δϕ, and the period of shaft
revolution δT as:

Rδϕ̇ (t1, t2)= Dm

2αJ 2
e−α|t2−t1|, (2.20)

Rδϕ (t1, t2)= Dm

2α3J 2

[
2α min (t1, t2)− e−α|t2−t1| + e−αt1 + e−αt2 −1

]
, (2.21)

RδT (t1, t2)= DmT 4
0

2 (2π)2 αJ 2
[2α (2 min (t1, t2)−min (t1 +T0, t2)−min (t1, t2 +T0))−

−2e|t2−t1| + e|t2−t1−T0| + e|t2−t1+T0|
]
. (2.22)

Equation (2.20) indicates that the rotation frequency is a steady-state random process,
the correlation time of which is determined by the parameter α−1. An analysis of (2.21)

Figure 4. Spectral densities of the phase-fluctuation powers Gδϕ (ω) rad2/Hz and fluctuations of the shaft current
rotation period GδT (ω) s2/Hz.
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and (2.22) indicates that fluctuations of the angular displacement and of the period are
non-Markov random processes, because their correlation functions depend not only on the
difference of the selected time instants t2 − t1, but also on the history of the shaft’s rotary
motion all the way from start-up.

3. Fluctuations of the period of the dynamic-system oscillation

The fluctuations of the rotation period of the cyclic mechanism elements reviewed above can
not be directly transferred to the study of dynamic systems with fluctuating elements. This is
due to the fact that the rate of movement of the information label versus detector changes
and is dependent on the displacement value of the oscillatory element with respect to the
equilibrium position.

Therefore, when setting ourselves to the task of studying the dynamics of such mechanical
systems as a torsion balance or a clockwork by measuring the oscillation period, we have to
face the problem of constructing hardware functions for the transformation of fluctuations of
the linear and angular displacements of oscillatory elements into fluctuations of their oscilla-
tion period.

Let us review the solutions of this problem. Suppose a variable x (t) describes the lin-
ear displacement from the equilibrium position of an element in oscillatory motion. The
condition that allows determining the current period of oscillations can be expressed as
[1, Equation 4.1; 3, p. 11]:

x (t)=x (t +T (t)) , (3.1)

where T (t) is the current oscillation period.
Further supposing that the oscillations are close to harmonic and their period can be

represented as (2.2), (2.3), then let us, in a first approximation, present expression (3.1) as:

x (t)=x (t +T0)+ ẋ (t +T0) δT (t) . (3.2)

Let us write the expression for the x (t) co-ordinate as:

x (t)=x0 sin (ω0t +α0)+ δx (t) , (3.3)

where x0 is the oscillation amplitude, α0 the initial phase, δx (t) fluctuations (variations) of the
oscillatory element co-ordinate, and ω0 =2π/T0 the average cyclic oscillation frequency. Then,
disregarding the infinitesimal higher-order terms, we may transform (3.2) into the correlation-
binding fluctuations (variations) of the oscillation period δT (t) and fluctuations (variations)
of the co-ordinate δx (t) as follows:

δT (t)=− T0

2π

1√
x2

0 −x2
n

(δx (t +T0)− δx (t)) , (3.4)

where xn =x (t) are the co-ordinates of the information detectors that register the occurrence
of specified displacements of the oscillatory element at time t . It is important to note that the
time moments t are not arbitrary here. They correspond to the moments when the oscillatory
element passes the discrete positions of the information detectors xn.

Comparison of (3.4) with expression (2.6) performed when studying cyclic mechanisms
with elements that are in oscillatory motion has indicated that period fluctuations depend on
the co-ordinates of the information detectors. It is also important to note that the measure-
ment procedure that is based on defining the time intervals between the closest marks is quite
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complicated in the case of oscillatory motion, because it is then necessary to use a nonlinear
transformation with the coefficient changing with time.

Similar transformations allow obtaining the correlation-binding fluctuations (variations) of
the period δT (t) and binding fluctuations (variations) of the angular displacement δϕ (t) for
an element carrying out angular oscillations, e.g. for the weighing beam of a torsion balance
or a clockwork, viz.

δT (t)=− T0

2π

1√
ϕ2

0 −ϕ2
n

(δϕ (t +T0)− δϕ (t)) , (3.5)

where ϕ0 is the amplitude of the element’s angular oscillations, and ϕn =ϕ (t) are the angular
co-ordinates of the information detectors.

Expression (3.5) can be converted to (2.6) by multiplication of the measured fluctuations

(variations) of the oscillation period by the scaling multiplier
√

ϕ2
0 −ϕ2

n. Each measured value
δT (t) is to be scaled by taking the angular co-ordinates of the information detectors into
account. Similarly, to transform (3.4) into (2.6) it is necessary to multiply the measurement

results by the value
√

x2
0 −x2

n.
It should be noted that without the above scaling, it will be very difficult to directly use

the measured values of the fluctuations (variations) of the period δT (t), which is defined by
(3.5) (or (3.4)) because the value of δT (t) depends on the angular (linear) co-ordinates of the
measurement detectors. To analyse the measurement results in this case it is necessary to per-
form additional studies of the specifics of the transformation of the fluctuations (variations)
of δϕ (t) (or δx (t)) co-ordinate into fluctuations (variations) of the oscillation period δT (t).

An expression for the spectral window of the transformation of the linear displacement
fluctuations into the current period fluctuations can be obtained by using the technique
described in Section 2. In a first approximation for |xn| � x0 and accurate to within a con-
stant factor, the obtained expression will coincide with (2.10), viz.

GδT (ω)= T 2
0

π2

1

x2
0 −x2

n

sin2
(

ωT0

2

)
. (3.6)

Replacing in (3.6) the linear co-ordinate x by the angular co-ordinate ϕ, we obtain an
expression for the spectral window for the angular oscillations of an element of a cyclic mech-
anism, namely

GδT (ω)= T 2
0

π2

1

ϕ2
0 −ϕ2

n

sin2
(

ωT0

2

)
. (3.7)

Therefore, it is possible to use the results obtained in Section 2 for a rotary motion to
study the specifics of the fluctuations of the oscillation period. In this case it is only neces-
sary to introduce the respective scale factor.

The obtained expressions describing the transformation procedure for the fluctuations
(variations) of the angular displacement of an oscillating element into fluctuations (variations)
of the oscillation period can be used to analyse the capabilities of the dynamic-measurement
method when applied in the case of gravity and seismic measurements with the help of a
torsion balance [4, pp. 50–64, 86–88]. Measurements with the help of a torsion balance do
not only take place in the static mode [5, pp. 356–387] when we register the twist angle of
a thread, but also in the dynamic mode by registering the current period of oscillations [6,
pp. 112–133; 7, pp. 88–89; 8, pp. 122–123]. In the latter case the information detectors are
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located at some fixed angles ϕn. They help to register the current oscillation period of the
sensitive element of the torsion balance.

Let us describe the oscillations of the weighing beam of a torsion balance under the influ-
ence of external disturbances with the help of the equation

ϕ̈ +2βϕ̇ +ω2
0ϕ = ξ(t), (3.8)

where ξ (t) represents white noise with dispersion D.
The procedure of dynamic measurements with a torsion balance assumes an initial excita-

tion of the balance by a preliminary swinging through some ϕ0 angle. For a high-quality bal-
ance carrying out natural oscillations, it is possible to assume that, within time intervals much
shorter than the constant of fall-time oscillations of the weighing beam, the oscillations are
close to harmonic. If the infinitesimal condition of fluctuations (variations) of the twist angle
of the balance thread is met in comparison with the oscillation amplitude of the weighing
beam ϕ0, that is, |δϕ (t)|�ϕ0, it becomes possible to use the spectral window (3.7).

Considering that ξ (t) is white noise, the spectral density of the angular fluctuations δϕ(t)

can be presented as:

Gδϕ (ω)= D(
ω2 −ω2

0

)2 +4β2ω2
, (3.9)

and the respective spectral density of fluctuations of the oscillation period δT (t) is given as:

GδT (ω)= D(
ω2 −ω2

0

)2 +4β2ω2

T 2
0

π2

1

ϕ2
0 −ϕ2

n

sin2
(

ωT0

2

)
. (3.10)

The expression (3.10) allows one to perform calculations of the spectral density of fluctua-
tions of the oscillation period of the sensitive element of the torsion balance on condition that
it is influenced by the external process described with the white-noise model. This expression
can be used to assess the torsion-balance limiting sensitivity. During this type of measurement
it is necessary to register oscillations of the balance weighing beam.

It should also be noted that, just as in case of studies of fluctuations of the rotation period
of a cyclic-mechanism element for the analysis of the spectral density of fluctuations of the
oscillation period of the sensitive element of the torsion balance, it is necessary to consider
the number of zeros of the spectral density among frequencies that are integer-valued divisible
by the average oscillation frequency. This specified feature leads in particular to the fact that,
when we measure gravity and seismic impacts with the help of a torsion balance operating in
the dynamic mode, they happen to be insensitive towards external disturbances of frequencies
that are integer-valued divisible by the average oscillation frequency of the torsion pendulum.
This limits the potential fields of application of the torsion balance with the preliminary exci-
tation of oscillations of their sensitive element.

4. Dynamics of a control system that uses measurements of time intervals

It is necessary to develop adequate procedures to describe the dynamics of control systems
that use the duration of the time interval between the moments of passing fixed displace-
ments as the information parameter taken from the feedback detector. A system responsible
for maintaining the rate of motion of the moving mirror of an infra-red measuring interfer-
ometer of a Fourier spectro-radiometer [9, p. 86; 10, p. 37; 11, pp. 32–34; 12, pp. 119–122] is
an example of such a control system. Requirements imposed on the permissible instability of
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the mirror rate of motion are strict. Therefore, it is necessary to analyse the functioning of
the reviewed control system with the specific features connected with the procedure of time
measurements taken into account.

The method of measuring the rate of the mirror is based on registering the duration of
its passing fixed linear displacements equal to half the length of the laser radiation wave λ0.
The laser is used in the reference channel of the Fourier spectro-radiometer. When the mir-
ror moves a distance equal to λ0/2, a shift of the fringe pattern by one interference band,
a photoelectron detector develops an information signal. Registration of the time T between
the moments when the detector is activated allows one to determine the rate of motion of the
moving mirror Ẋ =λ0/2T . At a constant rate of the mirror movement V0, the time interval
between recurrent moments of passing by the moving mirror for fixed linear co-ordinates can
be written as follows:

λ0/2=
∫ t

t−T (t)

Ẋ (t)dt . (4.1)

The difference of the time intervals T (t) of passing by the moving mirror of distances
between recurrent activations of the detector and the value T0δT (t)=T (t)−T0, can serve as
the error signal in the feedback of the control system. In a first approximation, considering
the rate of motion of the moving mirror close to the constant value V0, the above difference
can be presented as:

δT (t)=− ((X (t)−X (t −T0))−λ0/2) /V0, (4.2)

where X (t) denotes the dependence of the mirror co-ordinate as a function of time.
The motion of the mirror in the reviewed case can be described by the following equation

[1, Equation 6.15]
...

X +2βẌ +ω2Ẋ +γX =κV0δT (t)+ ξX (t) , (4.3)

where β,ω, γ and κ are parameters characterising the system and the control object; ξX(t)

stands for external determinate and random impacts. In Equation (4.3) the first component
of the sum (summand) in the right-hand part describes the controlling impact of the control-
system feedback.

Substitution of (4.2) in Equation (4.3) gives
...

X (t)+2βẌ (t)+ω2Ẋ (t)+ (γ +κ)X (t)=κX (t −T0)+κλ0/2+ ξX (t) . (4.4)

Expression (4.4), taking into account (4.2), allows one to write down an equation describ-
ing variations (fluctuations) of the imbalance time δT (t):

δ
...

T (t)+2βδT̈ (t)+ω2δṪ (t)+ (γ +κ) δT (t)=κδT (t −T0)+γ T0 + ξT (t) , (4.5)

where

ξT (t)=− (ξX (t)− ξX (t −T0)) /V0. (4.6)

Equation (4.5) shows that a stationary solution is obtained for δT = T0 or T = 2T0. This
indicates that the principal peculiarity of the system that controls the motion of the mirror
of the Fourier spectro-radiometer is the impossibility of ensuring a constant rate of mirror
motion within an infinitely large section of its displacement. During the motion the δT values
increase systematically, and the rate of motion of the moving mirror decreases. It should be



Determinate and random processes in cyclic and dynamic systems 287

noted that the obtained stationary solution does not describe the situation in general because
Equation (4.5) is approximate and is correct only if |δT (t)| � T0. Still the obtained result
qualitatively coincides with experimental data [11, Figure 2], [12, Figure 3].

Based on the mathematical model (4.5) we performed a computational simulation of the
moving mirror of a Fourier spectro-radiometer. The following parameters were used in the
calculations: T0 = 25µs, V0 = 1·26 × 10−2 m/s, β = 30 s−1, ω = 50 s−1, γ = 1·5 × 105 s−3, κ =
105 s−2, and the mean square deviation of the random process ξX (t) was assumed to be equal
to σξX

=107 s−3.
Figure 5 presents a calculated graph showing the dependence of the time interval T

(between recurrent moments of the photoelectron detector actuation) on the movement of the
mirror X. The initial transient that occurs after changing the direction of the mirror motion is
clearly seen in the graph. The systematic trend connected with the growth of the time inter-
val T , as long as the mirror moves, is also clearly seen in the graph. A comparison of this
dependence with experimental data shows good agreement [1, Figure 6.1].

Figure 6 illustrates the spectrum GT (f ) of fluctuations of the time interval T (t) connected
with the random influence onto the moving mirror. The presented graph shows the “hill” sys-
tem typical for the time measurements that was thoroughly analysed in Section 2.

Therefore, the above description of the dynamics of the moving mirror, together with the
control system that measures time intervals between recurrent moments of the photoelectron
detector activation as the feedback allows one to calculate the specifics of how the specified
technical system functions sufficiently adequately. Typical peculiarities that are revealed when
measuring periods of cyclic motion of different mechanisms are also evident when studying
the dynamics of the moving mirror of a Fourier spectro-radiometer.

5. Statistic description of the period fluctuations with the help of many-dimensional
generic functions

The application of multi-dimensional generic functions is the most consistent method to give
a statistic description of the periodic fluctuations for an arbitrary cyclic system. Multi-dimen-
sional generic functions describing period fluctuations of a cyclic system allow one to obtain
all the necessary statistic parameters of these fluctuations, such as n-dimensional distribution
functions, correlation functions of the nth order, spectral densities, etc. In particular, n-dimen-
sional generic functions allow the description of non-Markov processes in different physical
environments [4, pp. 210–242], [13, pp. 265–267], [14, pp. 26–31], [15, pp. 1312–1314].
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Figure 5. Dependence of the time interval T on the dis-
placement of the moving mirror X.

Figure 6. Spectral density GT (f ) of the time-interval
fluctuations T (t).
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Application of the method of multi-dimensional generic functions to describe period fluc-
tuations of high-Q oscillators and self-oscillating systems statistically helps in finding the
difference between the above fluctuations and fluctuations of the linear or angular displace-
ment for these systems. Defining differences between the characteristics of period fluctuations
and of the co-ordinate fluctuations that describe oscillations of the high-Q oscillator, is not
only useful from an application’s point of view, but is also of interest in fundamental research
because the model of a high-Q oscillator is widely used for the description of different phys-
ical processes.

The methods reviewed above for finding statistic characteristics allow one to obtain corre-
lation functions and spectral densities for fluctuations of the shaft rotation period and oscil-
lations of the moving elements of cyclic mechanisms and measuring devices. Still, in order to
solve some applied and fundamental problems, the necessity to have a more complete statis-
tical description arises and, in particular, using multi-dimensional generic functions and multi-
dimensional distribution functions [1, pp. 147–155], [16, pp. 80–85].

In accordance with [2, pp. 100–103] let us define multi-dimensional generic functions of
the fluctuations δT (t) of the rotation period based on a priori information about multi-
dimensional generic functions of the angular-displacement fluctuations δϕ (t).

As was mentioned above, fluctuations of the rotation period of a cyclic-mechanism shaft
δT (t) are related to the angular displacement fluctuations δϕ(t) via Equation (2.6) as follows:

δT (t)=− T0

2π
(δϕ(t +T0)− δϕ(t)), (5.1)

where T0 is the average value of the shaft rotation period. Equation (5.1) is correct when the
period fluctuations δT (t) are much less than the average period T0 : |δT (t)|�T0.

An analogous expression, accurate to within a constant factor 1/ϕ0, can also be obtained
when interfacing fluctuations of the oscillation period δT (t), and angular fluctuations δϕ(t),
while measuring the period at the times when the oscillating system passes the equilibrium
position (Equation (3.5)). In this case T0 represents the average period of the cyclic-system
oscillations.

For a cyclic system in fluctuating motion, for arbitrary placement of the measuring
detectors, it is necessary to perform a scaling (as described in Section 2) by multiplying the

measured period fluctuations by
√

ϕ2
0 −ϕ2

n prior to processing the measurement results. This
procedure allows one to obtain an interface between the angular displacement fluctuations
δϕ(t) and the oscillation-period fluctuations δT (t) as given by (5.1). A knowledge of the
generic function δϕ(t) as given by (5.1) allows one to define the generic function of the pro-
cess δT (t).

Let us define the one-dimensional generic function g(λ; t) describing the period fluctua-
tions δT (t). Putting the expression (5.1) into the general formula to define the generic func-
tion [13, p. 292, Formula 40] gives:

g(λ; t)= 〈
exp (iλδT (t))

〉=
〈
exp

(
i
T0

2π
λδϕ(t)− i

T0

2π
λδϕ(t +T0)

)〉

=〈exp (iµ1δϕ1(τ1)+ iµ2δϕ2(τ2))〉=h2 (µ1,µ2; τ1, τ2) , (5.2)

where 〈· · · 〉 stands for the procedure to define the distribution average, λ is the Fourier image
of the period fluctuations δT and µ is the Fourier image of the phase fluctuations δϕ; further
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µ1 = T0

2π
λ, µ2 =− T0

2π
λ,

δϕ1(τ1)= δϕ(t), δϕ2(τ2)= δϕ(t +T0),

τ1 = t, τ2 = t +T0.

(5.3)

The function h2 (µ1,µ2; τ1, τ2) is a two-dimensional generic function of a random process
δϕ(t).

A similar argumentation allows one to define a n-dimensional generic function
gn (λ1, . . . , λn; t1, . . . , tn) of the process δT (t) via the 2n-dimensional generic function
h2n (µ1, . . . ,µ2n; τ1, . . . , τ2n) of the process δϕ(t):

gn(λ1, . . . , λn; t1, . . . , tn)=h2n (µ1, . . . ,µ2n; τ1, . . . , τ2n) , (5.4)

where in the expression for the generic h2n (µ1, . . . ,µ2n; τ1, . . . , τ2n), it is necessary to have
the following substitutions:

µj = T0

2π
λj , µn+j =− T0

2π
λj ,

τj = tj , τn+j = tj +T0, j =1, n.

(5.5)

Therefore, if the 2n-dimensional generic function of the process δϕ(t) is known, then with
the help of expression (5.4) it is possible to determine the n-dimensional generic function of
the process δT (t). In this case the order of magnitude of the generic function is reduced by
a factor of two.

It should be noted that the expression (5.4) thus constructed does not allow backward
transformation. This is because, in order to find the generic function of the process δϕ(t) with
the help of the generic function of the process δT (t), it is necessary to raise the order of mag-
nitude of the generic function, which is impossible in general.

When using transformation (5.4) it is necessary to remember that for the succession of
the time moments τj , j =1,2n the requirement τj <τj+1 is optional. In actual fact, when the
requirement t1 <t2 < · · ·<tn is met, the conditions τ1 <τ2 < · · ·<τn and τn+1 <τn+2 < · · ·<τ2n

that follow from the expressions (5.5) are imposed on the succession of time moments τj . But,
depending on the value of the average period T0, the requirement τn <τn+1 is not indispens-
able and occurs only if τn − τ1 <T0.

If τn − τ1 > T0, the requirement τn < τn+1 is not met, even when applying Equation
(5.4) when a 2n-dimensional generic function h2n (µ1, . . . ,µ2n; τ1, . . . , τ2n) is imposed by the
requirement τj <τj+1 and the necessity arises to rearrange the time moments τj with a respec-
tive correction of (5.5). The above correction is necessary when fluctuations of the value δϕ(t)

are described in accordance with Wiener or Poisson random processes.
Let us now discuss some modelling examples regarding the definition of generic functions

for the period fluctuations δT (t) for different processes δϕ(t).

5.1. Example 1

Suppose a process δϕ(t) can be described as a Wiener random process with a four-dimen-
sional generic function [13, pp. 176–179, Formula 34]:

h4 (µ1, . . . ,µ4; τ1, . . . , τ4)= exp
[
−1

2
ν

∑4

j,k=1
µjµk min(τj , τk)

]
, (5.6)

where ν is the intensity of the process and min
(
τj , τk

)
is a procedure for determining the

minimum value between τj and τk. Then the two-dimensional generic function of the process
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δT (t), when t2 >t1, can be presented as follows:

g2 (λ1, λ2; t1, t2)= exp

[
−1

2
ν

T 2
0

(2π)2

(
(λ1 +λ2)

2 T0 +2λ1λ2 min (t2 − t1, T0)
)]

. (5.7)

Equation (5.7) is correct when t2 − t1 <T0, and when t2 − t1 >T0.
A transformation (see [4, Formula 7.49])

g1 (λ1; t1)= g2 (λ1, λ2; t1, t2)|λ2=0 (5.8)

allows one to write the one-dimensional generic function for the process under consideration
as follows:

g1 (λ)= exp

[
−1

2
ν

T 3
0

(2π)2
λ2

]
. (5.9)

The correlation function of the period fluctuations δT (t) can be defined with the help of
the transformation (see [4, Formula 3.55])

RδT (t1, t2)= ∂2g2 (λ1, λ2; t1, t2)

i∂λ1i∂λ2

∣∣∣∣∣
λ1=λ2=0

(5.10)

and in this case is as follows:

RδT (t2 − t1)=ν
T 2

0

(2π)2 (T0 −min (t2 − t1, T0)) , (5.11)

where t2 > t1. Equation (5.11) indicates that, when t2 − t1 ≥ T0, the correlation function is
RδT (t2 − t1)=0.

5.2. Example 2

Let us consider the case when δϕ(t) represents a general Poisson process with a four-dimen-
sional generic function of the form (see [13, pp. 176–179, Formula 34]):

h4 (µ1, . . . ,µ4; τ1, . . . , τ4)= exp
[
ν

∑4

j=1
τj

(
ga

(∑4

k=j
µk

)
−ga

(∑4

k=j+1
µk

))]
,

(5.12)

where ga (µ) is the generic function of the Poisson process discontinuity.
In this case the two-dimensional generic function of the process δT (t) becomes:

g2

(
λ1, λ2; t1, t2

)
= exp

[
−ν

((
1−ga

(
− T0

2π
(λ1 +λ2)

))
T0 +

+
(

1−ga

(
− T0

2π
λ1

)
−ga

(
− T0

2π
λ2

)

+ga

(
− T0

2π

(
λ1 +λ2

)))
min

(
t2 − t1, T0

))]
, (5.13)

where t2 >t1.
An application of transformation (5.8) yields the one-dimensional generic function

g1 (λ)= exp
[
−ν

((
1−ga

(
− T0

2π
λ

))
T0

)]
. (5.14)
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If δϕ(t) represents a Poisson process with single discontinuities and are therefore, described
by the four-dimensional generic function

h4 (µ1, . . . ,µ4; τ1, . . . , τ4)= exp
[
ν

∑4

j=1
τj

(
exp

(
i
∑4

k=j
µk

)
− exp

(
i
∑4

k=j+1
µk

))]
,

(5.15)

then the two-dimensional generic function of the process δT (t) is as follows

g2 (λ1, λ2; t1, t2)= exp
[
−ν

((
1− exp

(
−i

T0

2π
(λ1 +λ2)

))
T0+

+
(

1− exp
(

−i
T0

2π
λ1

))(
1− exp

(
−i

T0

2π
λ2

))
min (t2 − t1, T0)

)]
,

(5.16)

and its one-dimensional generic function becomes

g1 (λ)= exp
[
−ν

((
1− exp

(
−i

T0

2π
λ

))
T0

)]
. (5.17)

The correlation function for the reviewed event coincides with the function (5.11).
The two-dimensional generic functions of the process δT (t) defined above allow one to

conclude that, if transformation (5.1) is made to belong to a Wiener process, the ones for
Poisson processes are transformed into processes that do not involve independent increments.
For a process with an independent increment, the following equation is to be satisfied (see
[13, p. 176, Formula 34]):

g2 (λ1, λ2; t1, t2)= g1 (λ1 +λ2; t1) g1 (λ2; t2)

g1 (λ2; t1)
. (5.18)

Substitution in Equation (5.18) of (5.7) and (5.9) does not lead to an identity. Similarly for
expressions (5.13) and (5.14) Equation (5.18) is not an identity.

If the requirement t2 − t1 ≥T0 is met, the considered processes become processes with inde-
pendent values, because the following requirement is seen to be satisfied:

g2 (λ1, λ2; t1, t2)=g1 (λ1; t1) g1 (λ2; t2) , (5.19)

and the correlation function becomes zero (see Equation (5.11)).

5.3. Example 3

When the process δϕ(t) can be described by stationary Gauss noise with zero distribution
average and the correlation function:

Rδϕ(τ2 − τ1)=D exp (−α |τ2 − τ1|) , (5.20)

where D is the dispersion of the process δϕ(t) and α is the boundary frequency, then its four-
dimensional generic function is:

h4 (µ1, . . . ,µ4; τ1, . . . , τ4)= exp
[
−D

2

∑4

j,k=1
µjµk exp

(−α
∣∣τj − τk

∣∣)
]

. (5.21)
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The two-dimensional generic function of the δT (t) now becomes:

g2 (λ1, λ2; t1, t2)= exp
[

−D
T 2

0

(2π)2

{(
λ2

1 +λ2
2

)
(1− exp(−αT0))+

+λ1λ2 (2 exp (−α |t2 − t1|)− exp (−α |t2 − t1 −T0|)
− exp (−α |t2 − t1 +T0|))

}]
(5.22)

and its one-dimensional generic function is therefore equal to

g1 (λ)= exp

[
−D

T 2
0

(2π)2
λ2 (1− exp(−αT0))

]
. (5.23)

The correlation function of the δT (t) period fluctuation in the event under consider-
ation is:

RδT (t2 − t1)=D
T 2

0

(2π)2
(2 exp(−α|t2 − t1|)− exp(−α|t2 − t1 −T0|)

− exp(−α|t2 − t1 +T0|)), (5.24)

and the distribution average is equal to zero
If the process δϕ(t) represents white Gauss noise with the correlation

Rδϕ(τ2 − τ1)=Dδϕδ(τ2 − τ1), (5.25)

where Dδϕ is the bilateral spectral density of the power of the fluctuations of the δϕ(t) pro-
cess, the correlation function of the process δT (t) becomes

RδT (t)=Dδϕ

T 2
0

(2π)2 (2δ(t)− δ(t −T0)− δ(t +T0)) , (5.26)

which corresponds to expression (2.8) obtained in Section 2.
Therefore, the examples considered here illustrate the change of the process characteristics

when transferring from the angular fluctuations δϕ(t) to the period fluctuations δT (t). Wie-
ner and Poisson processes are transformed into processes that are not described by a process
model with independent increments. Transformation (5.1) transforms a Markov random pro-
cess of the phase fluctuations δϕ(t) described by expression (5.21) into a non-Markov ran-
dom process of the period fluctuations δT (t) with a two-dimensional generic function given
by (5.22).

6. Fluctuations of the oscillation period of high-Q oscillator in case of resonant excitation

We shall now describe a high-Q oscillator that is influenced by a delta-correlated Gauss pro-
cess. Nyquist noise can be viewed as such a process. We shall limit ourselves to the event
when the high-Q oscillator is influenced not only by a random process but also by a reso-
nant external force leading to the excitation of harmonic oscillations. Suppose that the ampli-
tude of the oscillations caused by the influence of a random process is small in comparison
with the amplitude of the determinate steady-state oscillations excited by an external resonant
force.

For the situation consideration here an approximate description of the oscillations can be
done with the help of an asymptotic method involving averaging within the oscillation period
(see [17, pp. 230–237]).
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The equation for the high-Q oscillations, when these are influenced by an external reso-
nant force, can be presented as follows:

ẍ +2βẋ +ω2
0x =f (t)+ ξ (t) , (6.1)

where β is a damping factor, ω0 is the fundamental frequency of the oscillator’s oscillations,
f (t) represents the external determinate harmonic influence with f0 being the amplitude and
ω0 the frequency:

f (t)=f0 cos (ω0t) ; (6.2)

further ξ (t) represents a random Gauss process with zero distribution average and correlation
function as:

〈ξ (t2) ξ (t1)〉=2Dδ (t2 − t1) . (6.3)

The expression for the diffusion coefficient D depends on the type of oscillator (mechan-
ical oscillating system, electric oscillatory circuit, etc.). For the case of a body with mass m

suspended by an elastic chord, the expression is as follows:

D = 2βkBTtm

m
, (6.4)

where kB is Boltzmann’s constant, Ttm is temperature.
Supposing that the requirement β � ω0 is satisfied for the oscillator, let us set up an

asymptotic solution by applying the method of averaging (see [18, pp. 170–172]). To do this,
we shall write the solution of Equation (6.1) as

x (t)=A(t) sin (ω0t + δϕ (t)) . (6.5)

Then we obtain a system of abridged equations as [1, Equations 7.35, 7.36]:

Ȧ+βA= f0

2ω0
cos (δϕ)+ ξA (t) , (6.6)

Aδϕ̇ =− f0

2ω0
sin (δϕ)+ ξδϕ (t) . (6.7)

Here the functions ξA (t) and ξδϕ (t) represent Gauss random processes with zero distribution
average and correlation functions as [19, p. 77, Formula 2.63]:

〈ξA (t2) ξA (t1)〉= 〈
ξδϕ (t2) ξδϕ (t1)

〉= D

ω2
0

δ (t2 − t1) . (6.8)

We now assume that the fluctuations of the oscillation phase δϕ (t) are small: |δϕ (t)|�1.
Then, in a first approximation, the system of Equations (6.6) and (6.7) becomes

Ȧ+βA= f0

2ω0
+ ξA (t) , (6.9)

Aδϕ̇ =− f0

2ω0
δϕ + ξδϕ (t) . (6.10)

We write the amplitude of the oscillations A(t) as the sum

A(t)=A0 + δA (t) , (6.11)
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where δA (t) are small-amplitude fluctuations: |δA (t)|�A0, A0 =〈A(t)〉=const is the average
value of the amplitude of the oscillations caused by the resonant excitation. Equation (6.9)
yields the following:

A0 = f0

2βω0
. (6.12)

Equation (6.10) becomes:

δϕ̇ +βδϕ = 1
A0

ξδϕ (t) . (6.13)

Equation (6.13) allows one to obtain a four-dimensional generic function of the process δϕ (t)

(see [13, pp. 315–323]) which is similar to expression (5.21):

h4 (µ1, . . . ,µ4; τ1, . . . , τ4)= exp

[
− D

4βω2
0A

2
0

∑4

j,k=1
µjµk exp

(−β
∣∣τj − τk

∣∣)
]

. (6.14)

Suppose the period measurements occur at the time instants when the oscillator passes
some positions xn that correspond to the locations of the measuring detectors. In what fol-
lows we shall assume that the values of the period fluctuations δT (t) are scaled through mul-

tiplication by the corresponding dimensionless coefficients
√

A2
0 −x2

n/A0.
Then, in accordance with Equation (5.22), we obtain an expression for the two-dimen-

sional generic function of the oscillation-period fluctuations δT (t) of the high-Q oscillator
with resonant excitation:

g2 (λ1, λ2; t1, t2)= exp
[
−1

2

((
λ2

1 +λ2
2

)
DδT +2λ1λ2RδT (t2 − t1)

)]
, (6.15)

where DδT is the dispersion of the period fluctuations:

DδT = DT 4
0

(2π)4βA2
0

(1− exp(−βT0)) , (6.16)

RδT (t2 − t1) is the correlation function:

RδT (t2 − t1)= DT 4
0

2(2π)4βA2
0

(2 exp (−β |t2 − t1|)−

− exp (−β |t2 − t1 −T0|)− exp (−β |t2 − t1 +T0|)) . (6.17)

Equation (6.15) allows one to obtain an expression for the two-dimensional distribution
function of the oscillation period fluctuations δT (t):

f2 (δT1, δT2; t1, t2)= 1

2π

√
D2

δT −R2
δT (t2 − t1)

exp

[
−

(
δT 2

1 + δT 2
2

)
DδT −2δT1δT2RδT (t2 − t1)

2
(
D2

δT −R2
δT (t2 − t1)

)
]

.

(6.18)

It should be noted that expression (6.14) presented above allows us to write the equation
for the two-dimensional distribution function of the oscillation-phase fluctuations δϕ (t) which
is analogous to formula (6.18):
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f2 (δϕ1, δϕ2; t1, t2)= 1

2π

√
D2

δϕ −R2
δϕ (t2 − t1)

exp


−

(
δϕ2

1 + δϕ2
2

)
Dδϕ −2δϕ1δϕ2Rδϕ (t2 − t1)

2
(
D2

δϕ −R2
δϕ (t2 − t1)

)

 ,

(6.19)

where the phase-fluctuation dispersion is as follows:

Dδϕ = DT 2
0

2(2π)2βA2
0

; (6.20)

the correlation function is therefore equal to

Rδϕ (t2 − t1)= DT 2
0

2(2π)2βA2
0

exp (−β |t2 − t1|) . (6.21)

The correlation functions (6.17) and (6.21) allow one to obtain expressions for the bilateral
spectral densities of the period fluctuations δT (t) and the oscillation phase δϕ (t):

GδT (ω)= DT 4
0

4(π)4A2
0

(
β2 +ω2

) sin2
(

ωT0

2

)
, (6.22)

Gδϕ (ω)= DT 2
0

(2π)2A2
0

(
β2 +ω2

) . (6.23)

Let us analyse the expressions obtained above. Figure 7 presents graphs of the spectral
densities expressed by the Equations (6.22) and (6.23).

A comparative analysis of the presented graphs reveals a significant difference between
fluctuations of the oscillation phase and the oscillation period. In the graphs of the spectral
density GδT (ω) describing oscillation-period fluctuations, frequencies with zero values of the
spectral density are present. They are not present in the Gδϕ (ω) graph. Analogous dependen-
cies were obtained in Section 2 where we studied specific features of fluctuations of the rota-
tion period of a cyclic-mechanism element.

7. Period fluctuations of a self-oscillating system

Let us now discuss an auto-oscillating system that is influenced by a delta-correlated Gauss
random process. We assume that the system is in a mode of developed generation and that
the amplitude of its oscillations is practically constant.

The equation describing the dynamics of the auto-oscillating system will be given as (see
[17, p. 281, Equation 1.3], [20, Equation 7.2.9])

ẍ +2βẋ +κẋ3 +ω2
0x = ξ(t), (7.1)

where κ is a nonlinearity factor; also β <0.
Let us construct abridged equations for the oscillation amplitude of the system and the

oscillation phase:

Ȧ+βA+ 3
8
κA3 = ξA (t) , (7.2)

Aδϕ̇ = ξδϕ (t) . (7.3)
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As a first approximation the amplitude A0 of the steady-state auto-oscillations can be
found from Equation (7.2) as:

A0 =
√

8 |β|
3κ

. (7.4)

Then as an approximation the equation defining the phase fluctuations will be as follows:

δϕ̇ = ξδϕ (t)

A0
. (7.5)

As in the previous paragraph we will assume that ξδϕ (t) is a differential coefficient of the
Wiener process with the intensity

ν = D

ω2
0

(7.6)

Then, in accordance with expression (5.7), the two-dimensional generic function of the
period fluctuations δT (t) will be the same (6.15), with

DδT = DT 5
0

(2π)4A2
0

, (7.7)

RδT (t2 − t1)= DδT

T0
(T0 −min (|t2 − t1| , T0)) . (7.8)

The two-dimensional distribution function of the fluctuations of the auto-oscillation period
will be described by expression (6.18) after substituting in it the dispersion value and the cor-
relation function from (7.7) and (7.8).

If |t2 − t1|<T0, this distribution function becomes:

f2 (δT1, δT2; t1, t2)

= T0

2πDδT

√
(|t2 − t1|) (2T0 −|t2 − t1|)

exp

[
− (δT2 − δT1)

2 T 2
0 +2δT1δT2 (|t2 − t1|) T0

2DδT (|t2 − t1|) (2T0 −|t2 − t1|)

]
.

(7.9)

When |t2 − t1|≥T0, the two-dimensional distribution function is equal to a product of one-
dimensional distribution functions:

f2 (δT1, δT2)=f1 (δT1) f1 (δT2)= 1
2πDδT

exp

[
−δT 2

1 + δT 2
2

2DδT

]
. (7.10)

The bilateral spectral density of the fluctuations of the auto-oscillation period is:

GδT (ω)= 4DδT

ω2
sin2

(
ωT0

2

)
. (7.11)

The graph presented in Figure 8 illustrates the bilateral spectral density. It indicates that
the oscillation-period fluctuations for an auto-oscillating system have a limited spectrum, even
if the phase fluctuations represent a Wiener random process.

It should be noted that similar results are also obtained when analysing damped auto-
oscillations of the linear oscillator within time intervals that are much shorter than the con-
stant of the damping time: t �1/β.
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Figure 7. Graphs of spectral densities GδT (ω) and
Gδϕ(ω).

Figure 8. Graph of spectral density GδT (ω).

If ξδϕ (t) is a differential coefficient of a Poisson random process with intensity ν that is
defined by expression (7.6) then, in accordance with Equation (5.13), the two-dimensional
generic function of the period fluctuations will become:
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. (7.12)

It may become necessary to apply (7.12) to calculate period fluctuations. This equation is
needed to describe auto-oscillators, because noises that influence them are usually described
by a Poisson random process.

8. Conclusions

The description of cyclic dynamic systems given here does not claim to be exhaustive. This
is due to the fact that, when making models of systems with randomly changing time inter-
vals, we only took into account events with insignificant fluctuations of these intervals. This
assumption allowed us to obtain linear relations that could later become the basis for a linear
theory of dynamic systems with fluctuating time. Moreover, the above theory was only applied
for a sufficiently narrow category of technical devices.

Yet, the obtained results allowed us to solve the problem in a more general formulation.
This could become feasible by performing an overall analysis and studies of the following spe-
cific problems.

In the first place it is necessary to construct methods for developing nonlinear relations
between fluctuations of angular (or linear) displacements and fluctuations of the periods of
cyclic systems. These relations allow the modelling of cyclic mechanisms for sufficiently big
changes in the periods of their cyclic motion.

In the second place, the performed studies of time-interval fluctuations carried out here led
to the problem of developing adequate methods of their statistic description while accounting
for the non-Markov character of the above fluctuations. A model of the period fluctuations
as a non-Markov random process should make it possible to perform a more adequate sim-
ulation of technical systems.

Thirdly, it is necessary to apply the developed approaches to other cyclic dynamic systems.
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The proposed trends for further development of methods to describe cyclic dynamic sys-
tems does not cover all potential problems. Even so, their solution can give additional infor-
mation about processes taking place in technical devices, and will ensure the development of
adequate methods to study and describe complex dynamic systems.
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